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Abstract

Top quark production o�ers the unique opportunity to search for a charged

Higgs boson (H�), as the contribution from t ! H+b ! �+�b can be large

in extensions of the Standard Model. We use results from a search for top

quark pair production by the Collider Detector at Fermilab (CDF) in the e�+

E/T+jets and �� +E/T+jets signatures to set an upper limit on the branching

ratio of B(t! H+b) in 106 pb�1 of data. The upper limit is in the range 0.5
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to 0.6 at 95% C.L. for H+ masses in the range 60 to 160 GeV, assuming the

branching ratio for H+ ! �� is 100% . The � lepton is detected through its

1-prong and 3-prong hadronic decays.

Typeset using REVTEX
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Many extensions of the Standard Model (SM) include a Higgs sector with two Higgs

doublets, resulting in the existence of charged (H�) as well as neutral (h, H0, A) Higgs

bosons. The simplest extensions are the Two-Higgs Doublet Models (2HDMs) [1], in which

the extension consists only of the extra doublet. In a Type I 2HDM only one of the Higgs

doublets couples to fermions, while in a Type II model one Higgs doublet couples to the

\up" fermions (e.g., u,c,t), while the other couples to the \down" fermions (e.g., d,s,b). The

Minimal Supersymmetric Model (MSSM) [2] is a further extension of the SM, and has a

Higgs sector like that of a Type II 2HDM.

If the charged Higgs boson is lighter than the top quark [3{5], i.e. mH� < (mtop �mb),

the decay mode t! H+b will compete with the SM decay t! W+b. The consequence is that

t�t production and decay will provide a source of Higgs bosons in the channels W�H�b�b and

H+H�b�b produced with a strong{interaction rather than the weak{interaction cross{section

of direct H+H� pair production. In addition, the signature from top pair production and

decay is much cleaner than that of the direct production with respect to QCD background.

In a 2HDM and in the MSSM the branching ratio for t! H+b, Bt
Hb, depends on the

charged Higgs mass and tan�, the ratio of the vacuum expectation values for the two

Higgs doublets. Figure 1 shows the expected branching ratio from a leading{log QCD

calculation [6] in the MSSM for three di�erent charged Higgs masses mH� = 60; 100; 140

GeV/c2 as a function of tan �. For tan � <
� 1 and tan�>� 70 the MSSM predicts that the

decay mode t! H+b dominates.

Also shown in Figure 1 is the predicted branching ratio in the MSSM at lowest order for

the decay of the charged Higgs boson into a charged �{lepton and a �{neutrino (BH
��), which

has little dependence on the charged Higgs mass. For tan � > 1 the decay H+ ! �+��

is predicted to dominate over the other main decay mode, H+ ! cs, and for tan � > 5

the branching ratio BH
�� is expected to be nearly 100%. Thus, this model would predict an

excess of top events with tau leptons over the number expected from SM events in which

t�t! W+W�b�b, followed by W ! ��.

Recent calculations, however, have shown that at large values of tan� the predicted
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branching ratio for t! H+b is highly sensitive to higher{order radiative corrections, which

are model{dependent [7]. Limits in the tan � �mH� parameter plane consequently depend

critically on the parameters of the model. However the direct search for the signature of a

� lepton in top decays allows us to set an upper limit on the branching ratio of t! H+b,

assuming the branching ratio for H+ ! �� is 100%, for example.

Previous searches for the charged Higgs boson in top decay have been in the �+ 6Et chan-

nel [8] [9], ``+E/T+X (` = e or �, X=anything) channel [10], the E/T+�+jets channel [11,12],

the ` +jets channel [13,14], and the E/T + �b+O+ jet (O = e, �, � or jet) channel [15]. Both

Ref. [11] and Ref. [15] select the events with a E/T trigger, while Ref. [13,14] is an indirect

search using a disappearance method. Searches for direct production at LEP set a lower

limit on the mass of 69 GeV/c2 [16]. Indirect limits have also been set from measurements

of the rate for the decay b! s [17]. However higher{order calculations have shown that in

both 2HDM models [18] and the MSSM [19] these limits are also highly model{dependent.

CDF has published a search for � leptons from decays of top quark pairs in the `�+E/T+2

jets+X (` = e; �) channel [20], where the events were selected by requiring the presence of a

high{pT e or �. We present here the constraints that this analysis (the\`�" analysis) imposes

on the branching ratio of the top quark into a charged Higgs boson. This was suggested

in Ref. [21], where the authors compare the CDF data with a generator{level Monte Carlo

calculation for the number of expected events from charged Higgs decay.

In this paper we start with the number of top candidate events found in the `� +E/T +2

jets+X data in the analysis of Ref. [20]. We then apply the same selection criteria to Monte

Carlo events that contain top quark pairs in which one or both top quarks decay to the

charged Higgs (i.e. t�t ! W�H�b�b and t�t ! H+H�b�b), for di�erent Higgs masses. We

assume there are no top quark decays other than t ! W+b and t ! H+b. We perform

a full calculation of the acceptances including detector e�ects, and determine the expected

number of events due to Higgs production and subsequent decay. From this we can set a

limit on the branching ratio t! H+b.

The selection used in this analysis requires high{pT inclusive lepton events that contain an
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electron with ET > 20 GeV or a muon with pT > 20 GeV/c in the central region (j�j < 1:0).

The other lepton must be a tau lepton, also in the central region, with momentum pT > 15

GeV/c [25]. Dilepton events from t�t decays are expected to contain two jets from b decays

and large missing transverse energy from the neutrinos. Therefore, we select events with

� 2 jets (with ET > 10 GeV and j�j < 2:0), and with large E/T signi�cance (SE=T > 3), as

described in detail in Ref. [20].

Two complementary techniques, one which identi�ed the � lepton starting with clusters

in the calorimeter, and another which started with a high pT single track, were used for

identifying hadronically decaying � 's [20]. Here, we combine the two tau selections by

accepting events which pass either set of criteria. Both techniques �nd the same four top

dilepton candidates in 106 pb�1 of data. We expect 3.1�0.5 events from background sources,

and 0.9 � 0.1 events from SM top decay. The total acceptance of the combined selection for

SM top quark pairs decays, i.e. the events that pass the �nal cuts divided by the number

of generated t�t events, is (0.172�0.014)%. Although the identi�cation of b quarks was not

part of the search criteria, three of the four candidate events contain at least one b{tagged

jet [23], while we expect 0.2 tagged events from SM non{t�t background [20]. In the following

we will use the combined tau selection for our results.

If a charged Higgs boson is present all three of the �nal states W+W�b�b, W�H�b�b, and

H+H�b�b can contribute to the `� channel. The total acceptance for top decay in the `�

channel is given by

A`�
tot = (1� Bt

Hb)
2A`�

WW +

2(1 � Bt
Hb)B

t
HbB

H
��A

`�
WH +

(Bt
Hb)

2(BH
��)

2A`�
HH : (1)

Here A`�
WW is the total acceptance of the event selection criteria for the case where the

t�t pair decays into W+W�b�b. It includes the geometric and kinematic acceptances, the

e�ciencies for the trigger, lepton identi�cation, and cuts on the event topology, and all

branching ratios of both the � and the W boson [24]. Similarly, A`�
WH and A`�

HH are the
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respective total acceptances for the t�t pair decays into W�H�b�b and H+H�b�b, but where

the branching ratio of the top to Higgs (Bt
Hb) and of the Higgs to tau (BH

��) have been

factored out explicitly. We assume that BH
�� is 100%, as it would be at large tan � in the

MSSM, and set a limit on Bt
Hb.

We use a top quark mass of 175 GeV=c2. Monte Carlo simulations of tt production

and decay in the three modes W+W�b�b, W�H�b�b, and H+H�b�b provide estimates of the

geometric and kinematic acceptance, Ageom�PT , and of the e�ciency of the cuts on the event

topology for di�erent Higgs masses (mH� = 60; 80; 100; 120; 140; 160 GeV=c2). We use the

pythia [22] Monte Carlo to generate tt events, the tauola package [26], which correctly

treats the � polarization, to decay the tau lepton, and a detector simulation. The selection

of events is identical to that described in detail in Ref. [20]. The e�ciencies for electron and

muon identi�cation are measured from Z� ! e+e� and Z� ! �+�� data.

Figure 2 shows Ageom�PT , the e�ciency �jet of the 2{jet cut, the e�ciency �HT
of the cut

on the total transverse energy HT [20], and the e�ciency of the cut on the E=T signi�cance,

as a function of Higgs mass. As mH� increases the tau leptons become more energetic and

Ageom�PT increases. When mH� approaches mtop the b jets instead become less energetic and

�jet drops rapidly. Figure 3 shows the resulting values for A`�
WH and A`�

HH versus mH�; the

numerical values are listed in Table I. Note that relative to AHH, AWH has a factor of 2/9

in it due to the branching ratio for W ! `�, while a factor of two due to the two possible

charge combinations W+H� and W�H+ is added in eq. (1). Overall, the total acceptance

(A`�
tot) is rather insensitive to the value of the Higgs mass, ranging between 0.7 % and 1.3 %

until mH� approaches mtop. This is to be compared to the acceptance Al�
WW in the W+W�

�nal state [20] of 0.17%.

The expected number of events in the `� channel is given by

N `�
exp = �tt � L �A

`�
tot(B

t
Hb;mH�) (2)

and depends on Bt
Hb, the Higgs boson mass, and �tt, the total top pair production cross sec-

tion. Rather than use the theoretical prediction for �tt , we normalize to the observed num-
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ber of events in the `lepton + jets' channel with a secondary vertex tag, taking into account

the contributions from the three separate decay �nal states of W+W�b�b, W�H�b�b, and

H+H�b�b. We use the full Monte Carlo simulation and the updated tagging e�ciency [27],

which gives a central value of �tt = 5:1 pb in the SM case of Bt
Hb = 0. We thus calculate �tt

from the number of observed events in the lepton plus jets channel with a secondary vertex

tag, N `+jets, the expected number of SM background events B`+jets, and a total acceptance

A`+jets
tot (tan �;mH�) that takes the W

�H�b�b and H+H�b�b decay modes into account. This

can be written as

�tt =
N `+jets �B`+jets

L �A`+jets
tot (Bt

Hb;mH�)
(3)

where A`+jets
tot is given analogously to A`�

tot by

A`+jets
tot = (1� Bt

Hb)
2A`+jets

WW +

2(1� Bt
Hb)B

t
HbA

`+jets
WH +

(Bt
Hb)

2A`+jets
HH : (4)

The contribution from H+ ! cs decays is neglected, as we have assumed BH
�� = 1. For a

large branching ratio into H+b, the H+H�b�b mode becomes dominant and the leptons (e

or �), which in this case originate from tau decays, have a softer pT spectrum than leptons

produced inW decays, and A`+jets
tot decreases. Figure 4 shows the expected number of events

versus Bt
Hb from each of the W+W�b�b, W�H�b�b, and H+H�b�b decay modes for mH� = 100

GeV=c2.

Based on the observation of 4 events and the predicted background of 3:1 � 0:5 events,

we calculate a 95% C.L. upper limit on Higgs production of 7.4 events. When calculating

the limit, we include the systematic uncertainties, which are dominated by uncertainties on

�tt (19%), tau identi�cation (11%), b tagging e�ciency (10%) and Monte Carlo statistics

(8%). Then, to determine a limit on the branching ratio Bt
Hb, we calculate the number of

events expected versus Bt
Hb for di�erent Higgs masses in steps of 20 GeV/c2. Figure 5 shows

the region excluded at 95% C.L. as a function of the branching ratio of t! H+b. The upper
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limit is in the range 0.5 to 0.6 at 95% C.L. for H+ masses in the range 60 to 160 GeV.

For the special case of the MSSM, although the branching ratios have been shown to be

strongly model{dependent, for the Higgs mass parameter � < 0 the SUSY QCD and QCD

corrections come close to cancelling, and the next{to{leading order prediction is almost

unchanged from the tree{level result [7]. Figure 6 shows the expected number of `� events

versus tan� from each of the W+W�b�b, W�H�b�b, and H+H�b�b decay modes for mH� =

100 GeV=c2, at lowest order in the MSSM. The shapes of the curves are mainly due to the

variation of the branching ratio Bt
Hb as a function of tan �. Figure 7 shows the excluded

region in the plane of mH� and tan �, again at lowest order in the MSSM. In the region at

large values of tan � the tbH+ Yukawa coupling may become non{perturbative (see Ref. [7]).

In this case the limit is not valid.

We compare our results to those of Ref. [21]. We �nd that the acceptance is smaller

by about a factor of two. The limits presented in this letter use the correct W+W�b�b,

W�H�b�b, and H+H�b�b acceptances, including the correlations among the di�erent objects

(e; �; �; b-quark) in the events. The insight of Ref [21] that this will be a channel of much

interest in Fermilab Run II remains intact, however.

In conclusion, we have used the data from the CDF search [20] for top quark decays into

�nal states containing a light lepton (e or �) and a � lepton, detected through its 1-prong

and 3-prong hadronic decays, to set a limit on the branching ratio of the top quark into the

charged Higgs plus a b quark, Bt
Hb. The limit ranges from 0.5 to 0.6 at 95% C.L. for H+

masses in the range 60 to 160 GeV, assuming the branching ratio for H+ ! �� is 100%.
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TABLES

MHiggs Al�
WH (%) Al�

HH (%)

60 0.91�0.06 1.00�0.06

80 0.98�0.06 1.17�0.06

100 1.11�0.06 1.32�0.07

120 1.08�0.06 1.32�0.07

140 0.67�0.05 0.98�0.06

160 0.72�0.05 0.32�0.03

TABLE I. The total acceptance versus the mass of the charged Higgs boson for the `� +E/T +2

jets +X analysis. The uncertainties are statistical only. These numbers are to be compared to the

acceptance for SM top quark pair decays of Al�
WW = (0:172� 0:014)%. The larger acceptance with

the charged Higgs is primarily due to the larger branching fractions into � leptons.
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FIG. 3. Total acceptance in the \tau dilepton" channel, versus the mass of the Higgs boson.

The circles are for the W�H�b�b decay of the t�t pair; the squares for the H+H�b�b decay.

FIG. 4. The predicted number of events for 106 pb�1 of data versus the branching ratio for top

decay into H+b for mHiggs=100 GeV/c2. The graph shows the contributions from the W+W�b�b,

W�H�b�b, and H+H�b�b channels separately.
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FIG. 5. The region excluded at 95% C.L. for charged Higgs production versus the branching

ratio for top decay into H+b.

FIG. 6. The predicted number of events at lowest order in the MSSM for 106 pb�1 of data

versus tan�, for mHiggs=100 GeV/c2. The graph shows the di�erent contributions from the

H+H�b�b and W�H�b�b channels separately.
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FIG. 7. Excluded regions (95% C.L.) at di�erent values of tan� for charged Higgs production,

at lowest order in the MSSM. The coupling tbH+ may become non{perturbative in the region at

large values of tan �, and the limit does not apply.
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